Master's Thesis Defense

Analysis and Forecasting of Trending Topics in Online Media

Tim Althoff
German Research Center for Artificial Intelligence (DFKI)

Motivation

Large-scale Record of Human Behavior

 Primary method for communication by college students in the U.S.

340 million tweets each day by 500 million users

 One billion search requests and about twenty petabytes of user-generated data each day (2009)

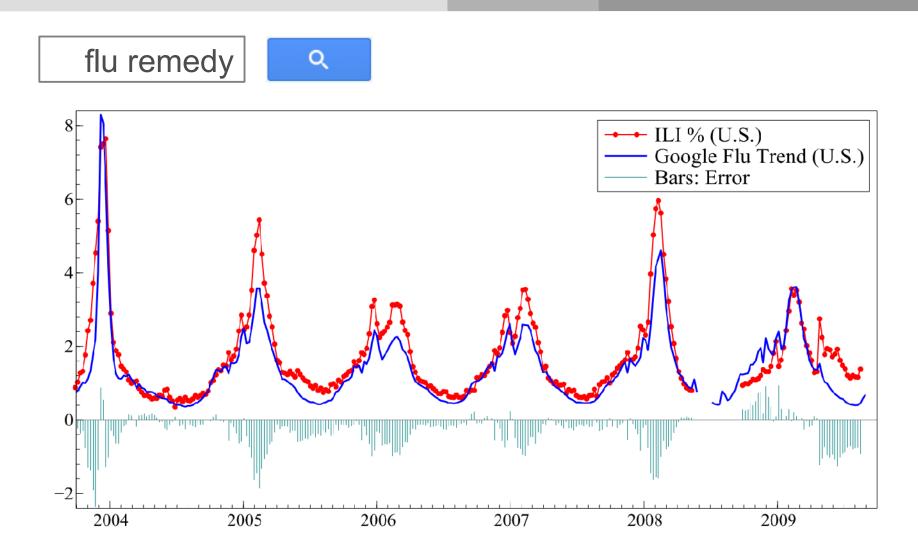
Motivation

- People use web for news, information, and communication
- Online activity becomes indicative of the interests of the global population
- After Boston, e.g. Twitter
 has become a trusted channel
 for authorities

, Mirror of Society"
[Steven Van Belleghem, 2012]

Use Case of Online Activity

Tracking Flu Infections



[Ginsberg et al. Detecting influenza epidemics using search engine query data. Nature. 2008.]

Shortcomings of Related Work

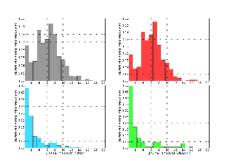
- 1. Focus on very specific use cases (e.g. flu)
- 2. Nowcasting instead of forecasting
- 3. Manual correlation analysis instead of fully automatic forecasting
- 4. No comparison/study of different online & social media channels wrt. emerging trends

[Choi and Varian. Predicting initial claims for unemployment benefits. Google, Inc. 2009.]
[Choi and Varian. Predicting the Present with Google Trends. Economic Record, 2012.]
[Ginsberg et al. Detecting influenza epidemics using search engine query data. Nature. 2008.]
[Cooper et al. Cancer internet search activity on a major search engine. Journal of medical Internet research, 2005.]

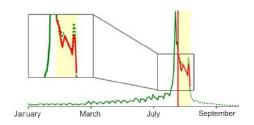
[Goel et al. Predicting consumer behavior with web search. National Academy of Sciences, 2010.] [Jin et al. The wisdom of social multimedia: using Flickr for prediction and forecast. ACM MM 2010.] [Adar et al. Why we search: visualizing and predicting user behavior. WWW, 2007.]

Goals of Master's Thesis

1. Multi-channel analysis of trending topics



2. Fully automatic forecasting of trending topics

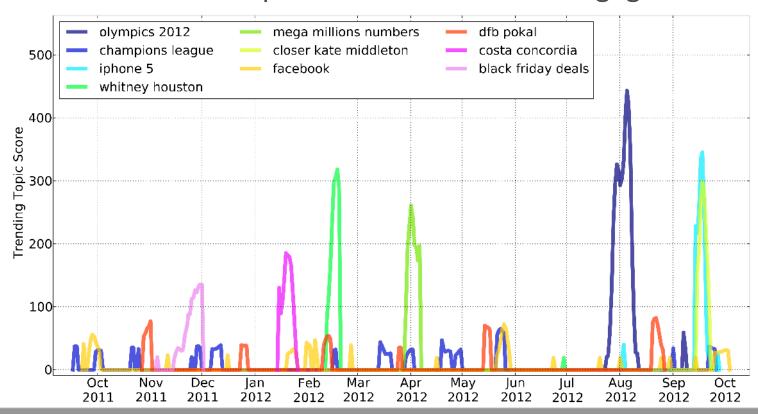


Trending Topics

Trending Topics

A trending topic

- is a subject matter of discussion agreed on by a group of people
- experiences a sudden spike in user interest or engagement



- Daily crawling of 10 sources
- Capturing
 - Communication needs
 - Search pattern
 - Information demand

[Damian Borth, Adrian Ulges, Thomas Breuel. Dynamic Vocabularies for Web-based Concept Detection by Trend Discovery. ACM Multimedia, 2012]

- Daily crawling of 10 sources
- Capturing
 - Communication needs
 - Search pattern
 - Information demand

Dataset

- Observation period
 - Sept. 2011 Sept. 2012
- 40,000 items analyzed

• ~3000 trending topics discovered

[Damian Borth, Adrian Ulges, Thomas Breuel. Dynamic Vocabularies for Web-based Concept Detection by Trend Discovery. ACM Multimedia, 2012]

Trending Topics

Tuesday, 23. Apr 2013

Clustering

Cluster: uli hoeneß

▶ uli hoeneß ▶ hoeneß ▶ uli hoeness

Cluster: richie havens

▶ Richie Havens ▶ richie havens

Cluster: boston suspects

▶ boston suspect ▶ boston suspects ▶ suspect

▶ boston marathon explosion ▶ boston marathon

Cluster: boston

▶ boston news ▶ boston ▶ boston explosion

Cluster: Earth Day

▶ Earth Day ▶ Earth Day 2013 ▶ earth day

Cluster: boston bombing

▶ boston bombing ▶ bombing

Cluster: happy st george's day

▶ happy st george's day ▶ happy earth day

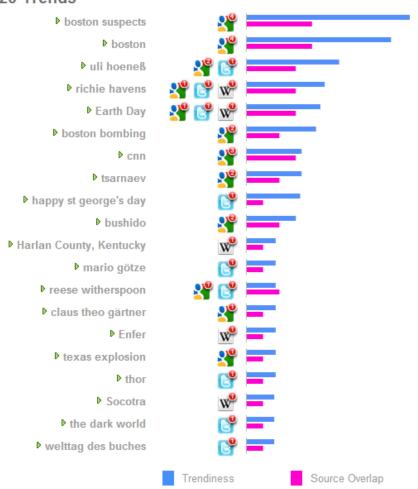
Cluster: reese witherspoon

▶ Reese Witherspoon ▶ reese witherspoon

Trending Topics

Tuesday, 23. Apr 2013

Top 20 Trends



Clustering

Cluster: uli hoeneß

▶ uli hoeneß ▶ hoeneß ▶ uli hoeness

Cluster: richie havens

▶ Richie Havens ▶ richie havens

Cluster: boston suspects

▶ boston suspect ▶ boston suspects ▶ suspect

▶ boston marathon explosion ▶ boston marathon

Cluster: boston

▶ boston news ▶ boston ▶ boston explosion

Cluster: Earth Day

▶ Earth Day ▶ Earth Day 2013 ▶ earth day

Cluster: boston bombing

▶ boston bombing ▶ bombing

Cluster: happy st george's day

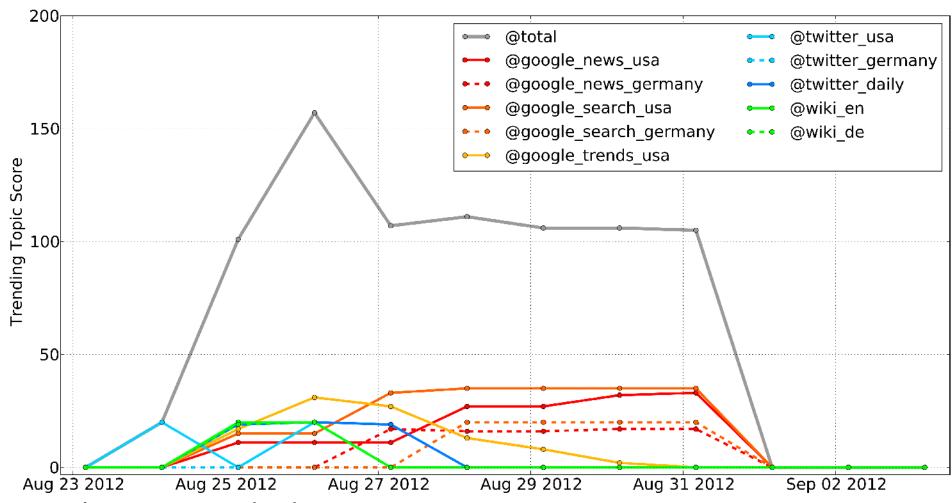
▶ happy st george's day ▶ happy earth day

Cluster: reese witherspoon

▶ Reese Witherspoon
▶ reese witherspoon

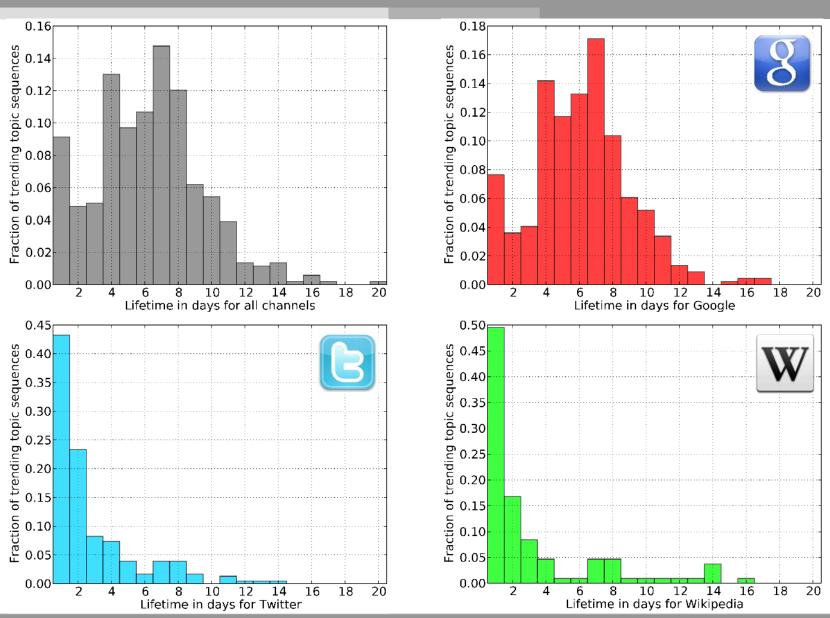
Multi-Channel Analysis

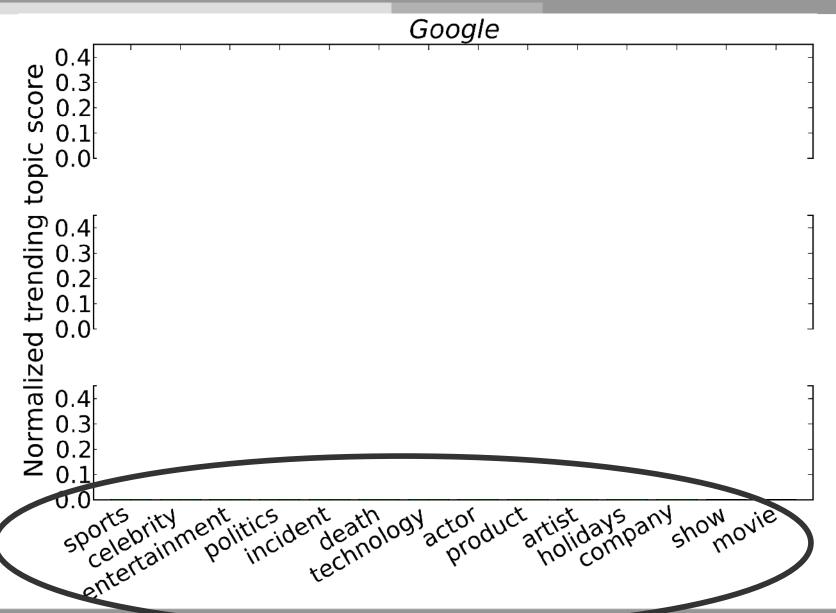
Example

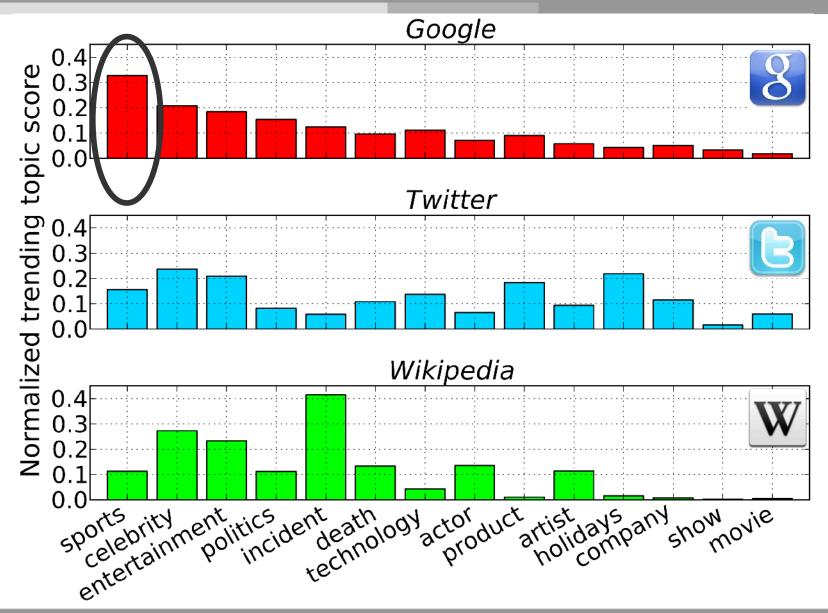


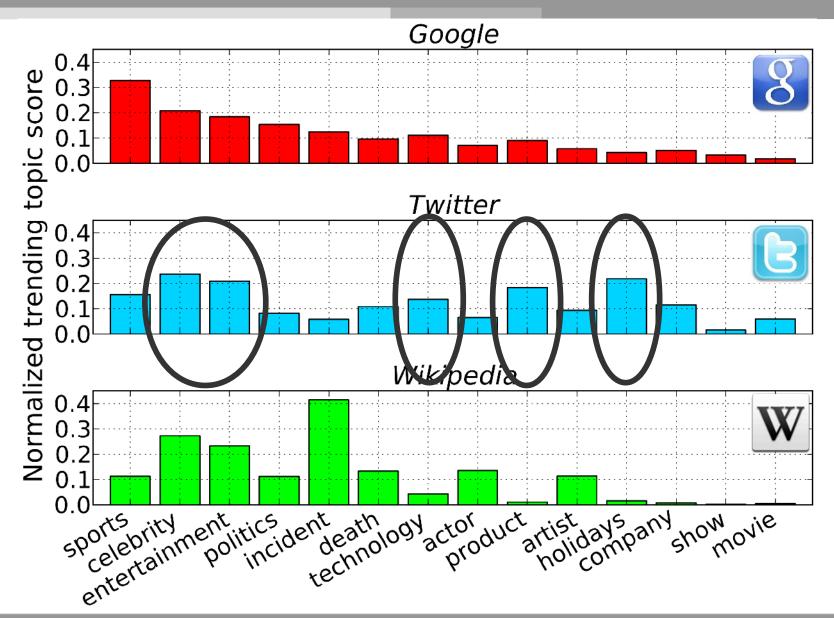
Neil Armstrong died on August 25, 2012.

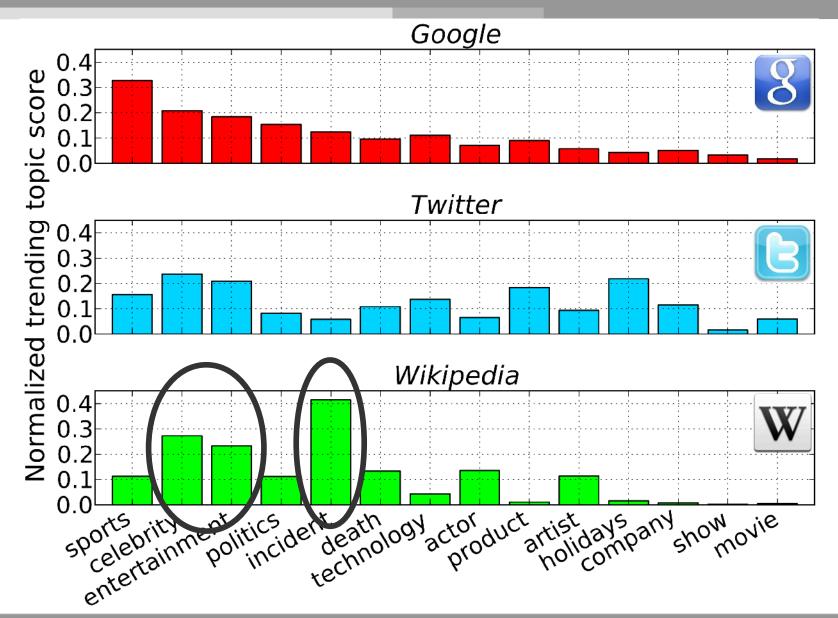
Lifetime Analysis





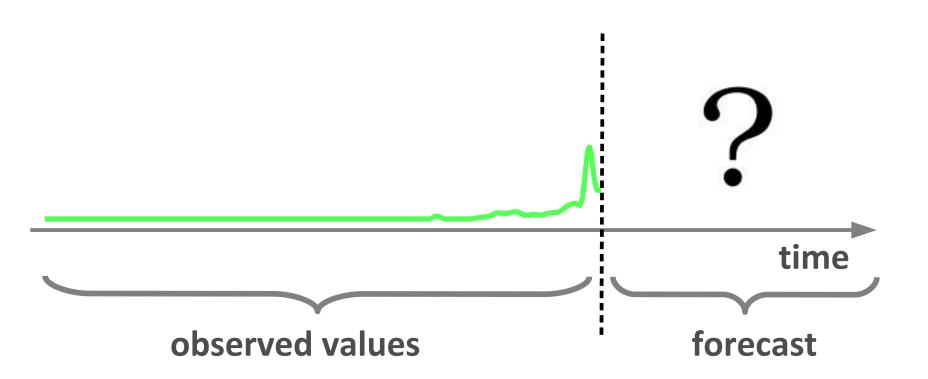






Forecasting

Forecasting



Naive
$$X_t = X_{t-1}$$



Naive
$$X_t = X_{t-1}$$
 Linear Trend
$$X_t = X_{t_0} + \frac{(X_{t_0} - X_{t_0 - d})}{d} \cdot (t - t_0)$$

Naive

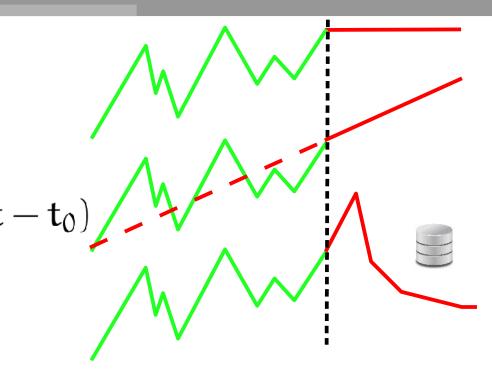
$$X_t = X_{t-1}$$

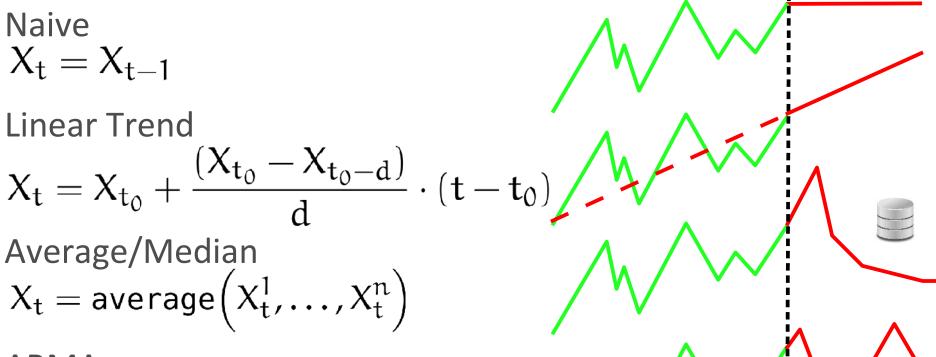
Linear Trend

$$X_{t} = X_{t_0} + \frac{(X_{t_0} - X_{t_0 - d})}{d}$$

Average/Median

$$X_t = average(X_t^1, \dots, X_t^n)$$





$$\begin{aligned} & \text{Average/Median} \\ & X_t = \text{average} \Big(X_t^1, \dots, X_t^n \Big) \\ & \text{ARMA} \\ & X_t = c + \epsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \theta_i \epsilon_{t-i} \Big) \end{aligned}$$

$$X_t = X_{t-1}$$

Linear Trend

$$X_{t} = X_{t_{0}} + \frac{(X_{t_{0}} - X_{t_{0}-d})}{d} \cdot (t - t_{0})$$

Average/Median

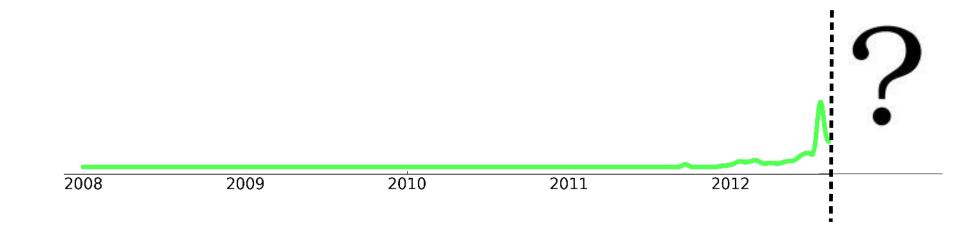
$$X_t = average(X_t^1, \dots, X_t^n)$$

$$X_{t} = c + \varepsilon_{t} + \sum_{i=1}^{p} \varphi_{i} X_{t-i} + \sum_{i=1}^{q} \theta_{i} \varepsilon_{t-i}$$

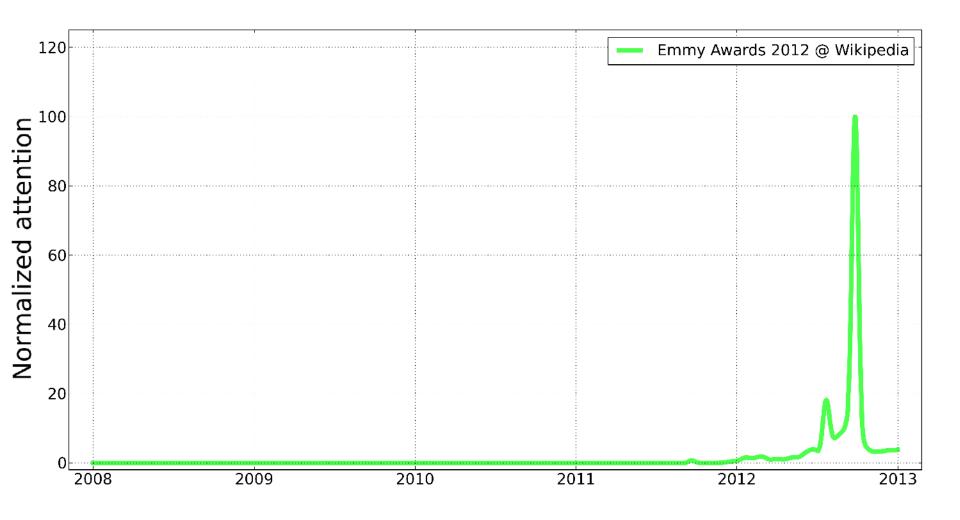
Nearest Neighbor

$$X_t = \operatorname{operator}\left(X_{t_1}^1, \dots, X_{t_k}^k\right)$$

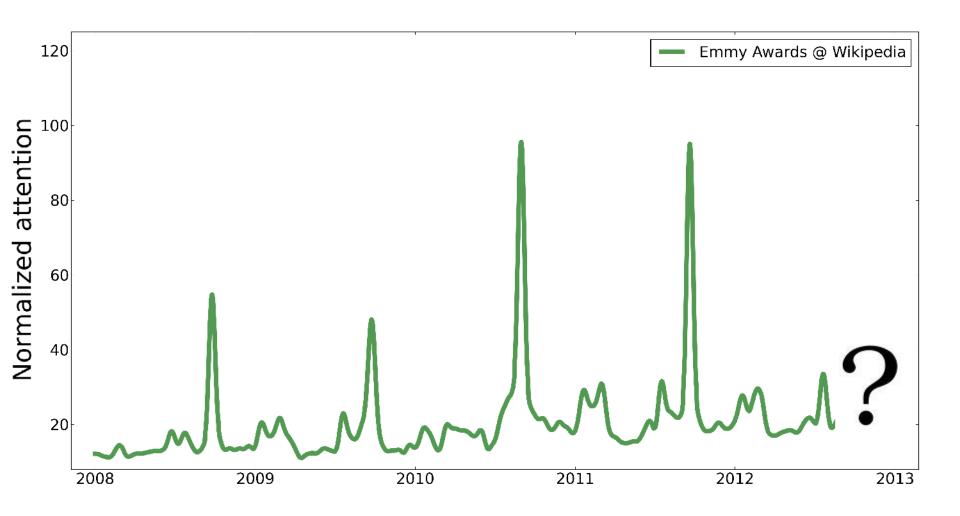
Example Signal



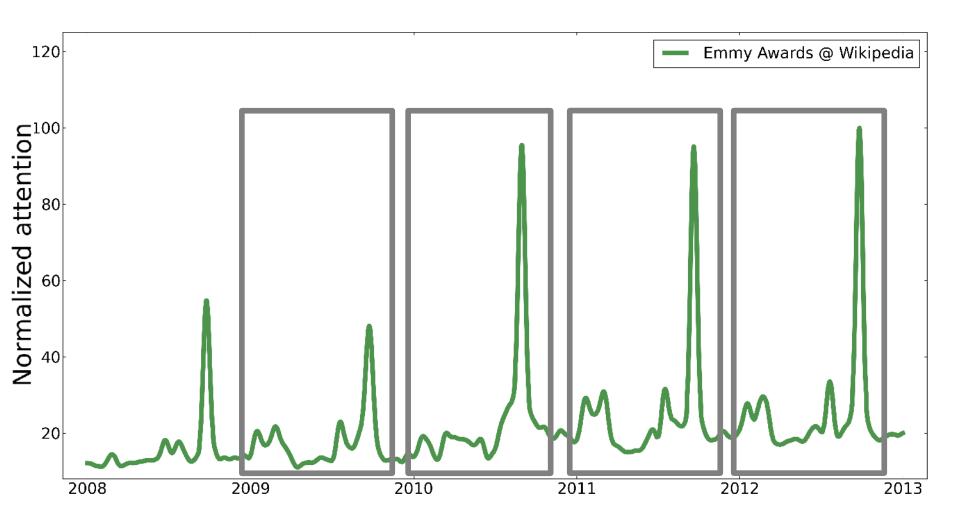
Forecasting Can Be Very Challenging



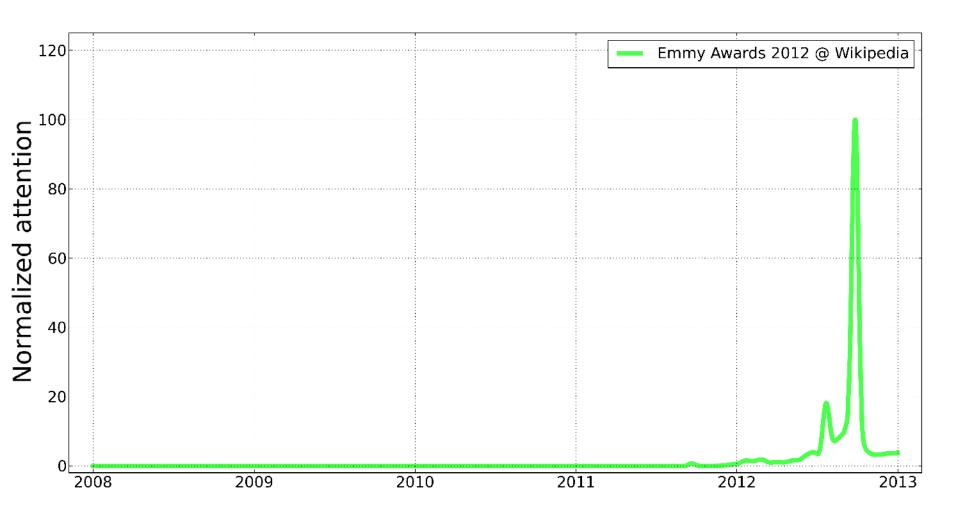
Recurring Signal



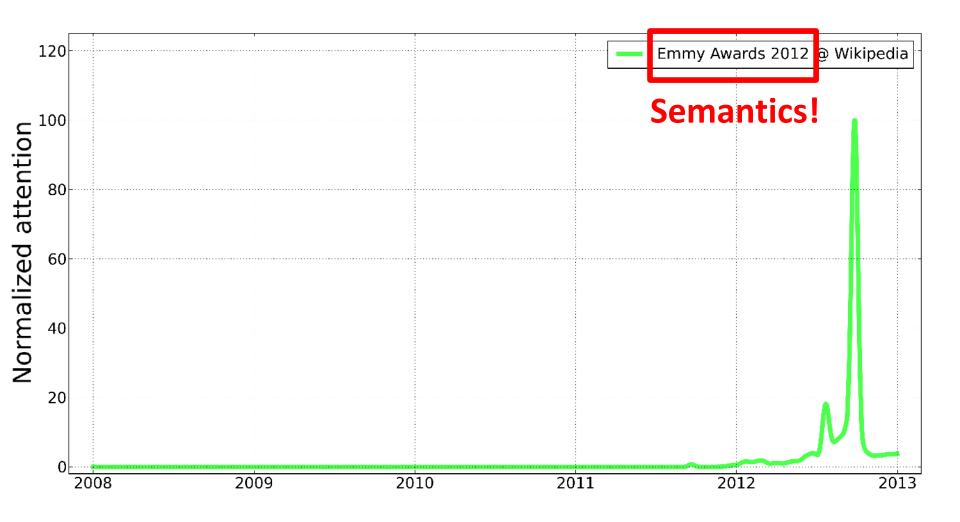
Recurring Signal



What To Do In This Case?

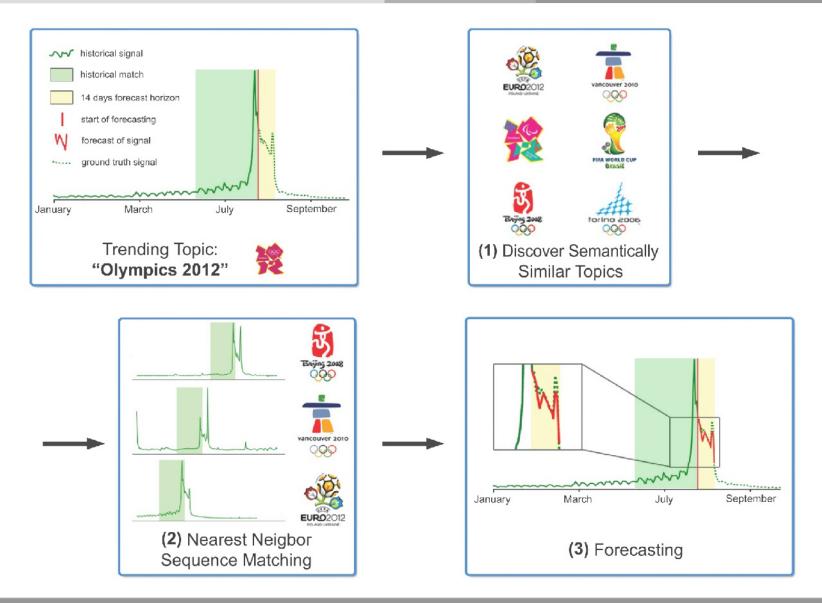


What To Do In This Case?

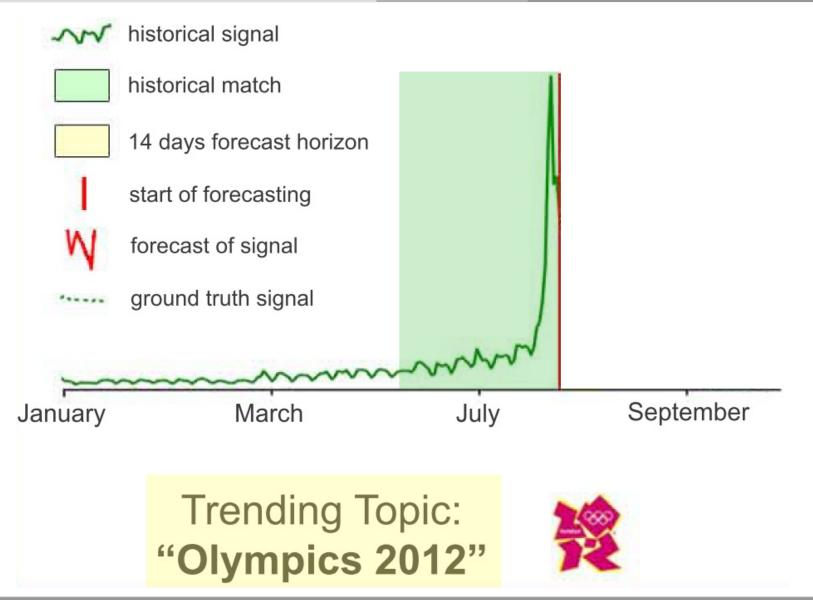


Exploiting Semantically Similar Topics

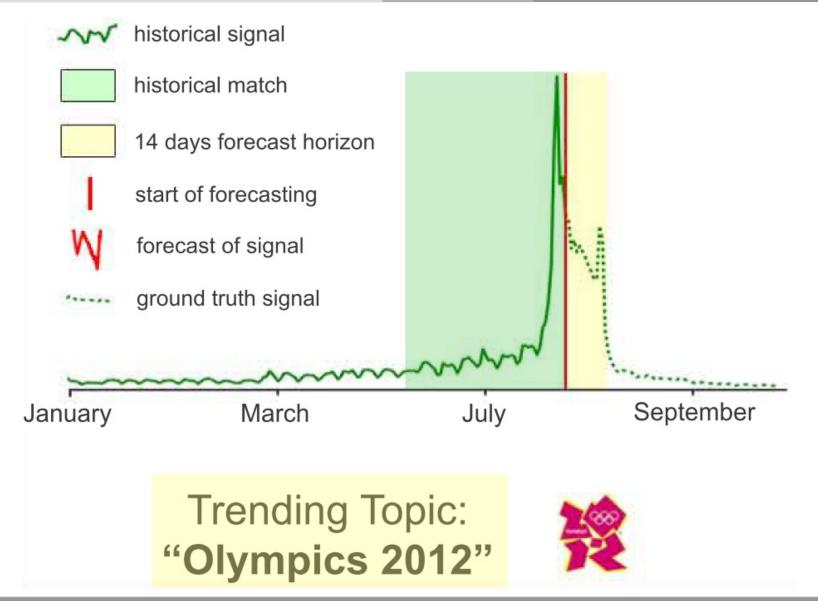
Approach



Approach



Approach



Discovering Semantically Similar Topics

Trending Topic: "Olympics 2012"

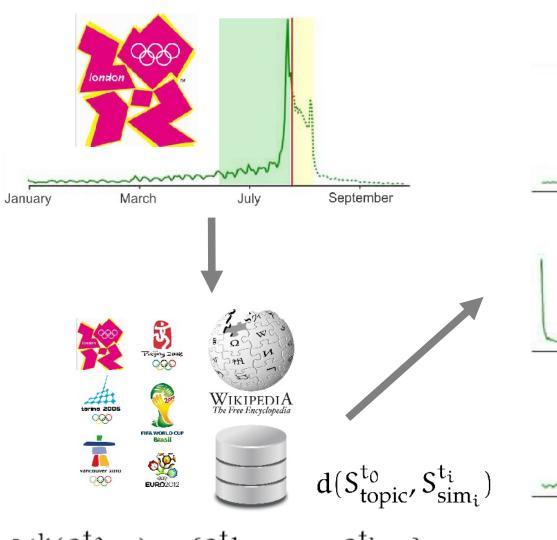
FIFA WORLD CUP

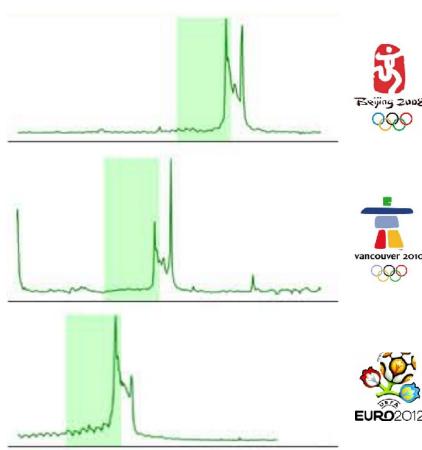
Brasil

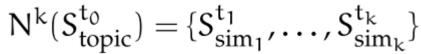
rdf:type

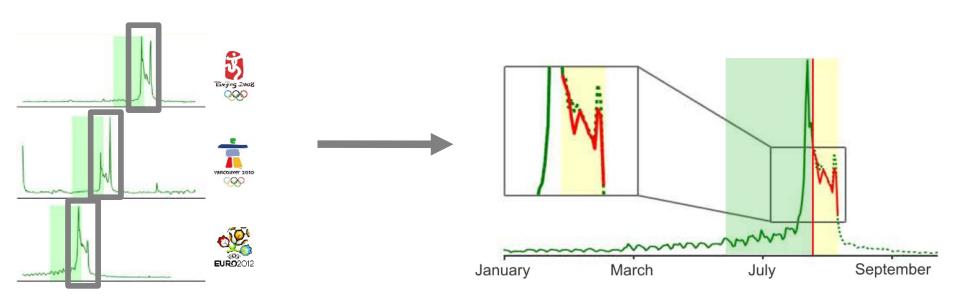
- category:Olympic_Games_in_the_United_Kingdom
- category:Sports_festivals_in_London
- category:Scheduled_sports_events
- category:2012_Summer_Olympics
- category:2012 in London
- owl:Thing
- http://schema.org/SportsEvent
- dbpedia-owl:Event
- dbpedia-owl:SportsEvent
- http://schema.org/Event
- dbpedia-owl:Olympics
- yago:SportsFestivalsInTheUnitedKingdom
- yago:SportsFestivalsInEngland
- http://umbel.org/umbel/rc/OlympicGames
- http://umbel.org/umbel/rc/SportsEvent
- http://umbel.org/umbel/rc/Event
- yago:SportingEventsInEngland

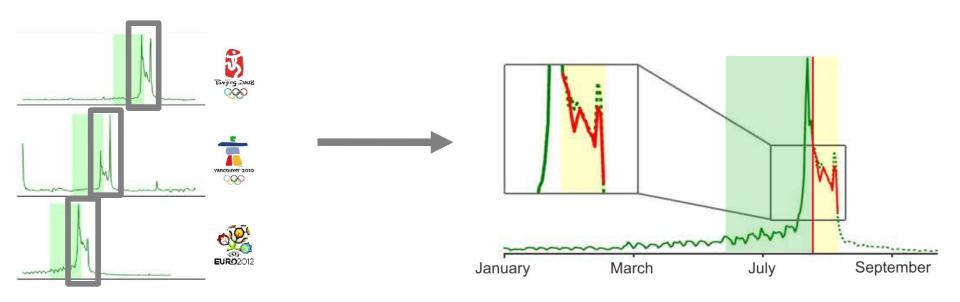
Nearest Neighbor Sequence Matching



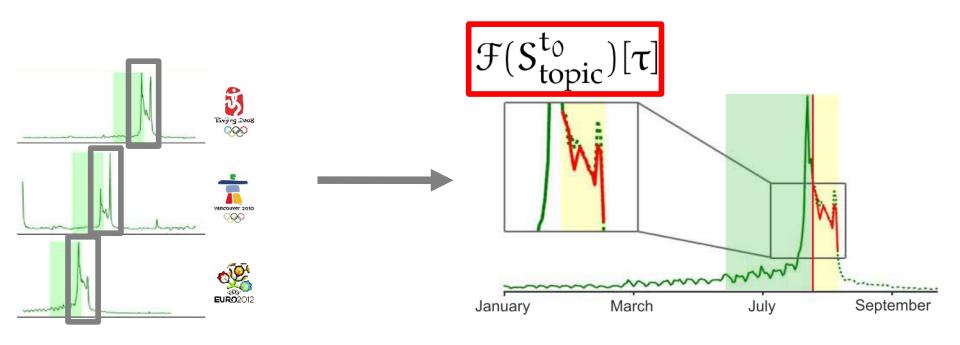




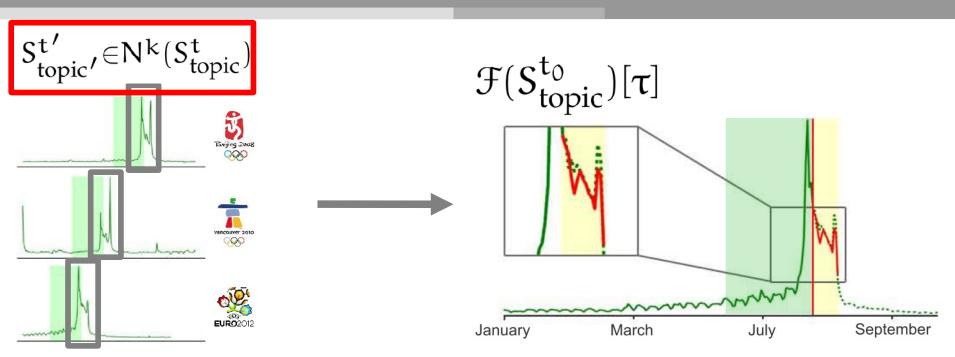




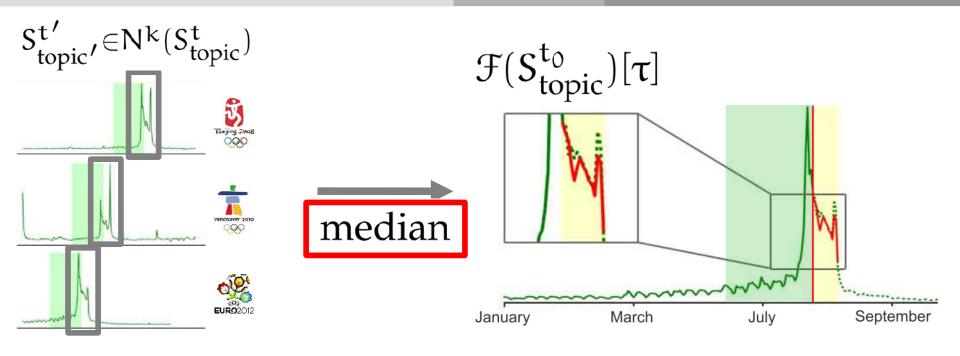
$$\mathcal{F}(S_{topic}^{t_0})[\tau] = \underset{S_{topic'}^{t'} \in N^k(S_{topic}^t)}{median} (\alpha(S_{topic'}^{t_0}, S_{topic'}^{t'}) \cdot S_{topic'}^{t'}[\tau])$$



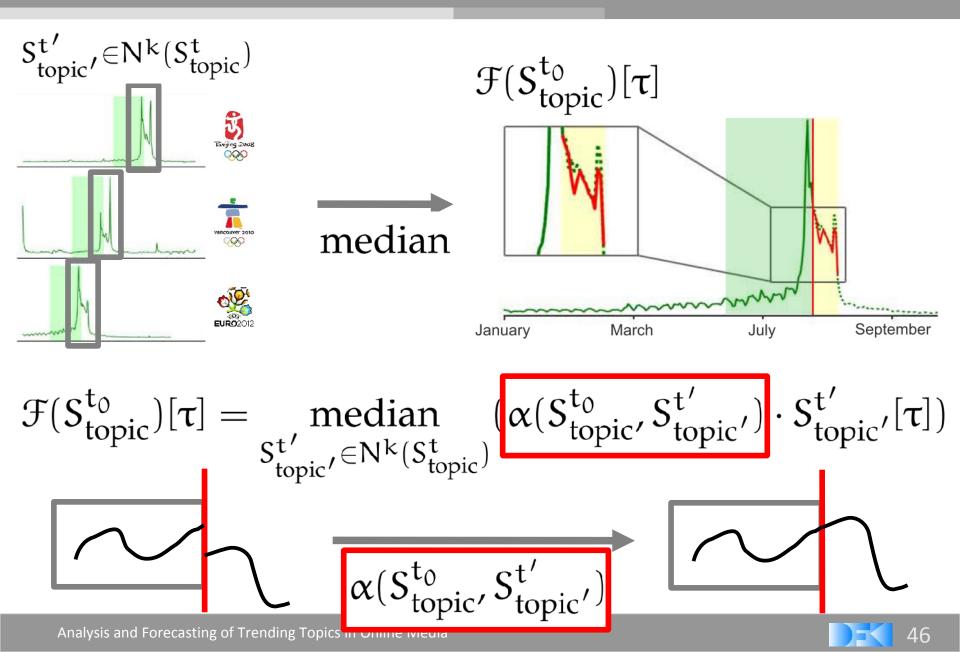
$$\mathcal{F}(S_{topic}^{t_0})[\tau] = \underset{S_{topic'}^{t'} \in N^k(S_{topic}^t)}{median} (\alpha(S_{topic'}^{t_0}, S_{topic'}^{t'}) \cdot S_{topic'}^{t'}[\tau])$$



$$\mathcal{F}(S_{topic}^{t_0})[\tau] = \underbrace{\text{median}}_{S_{topic'}^{t'} \in N^k(S_{topic}^t)} (\alpha(S_{topic'}^{t_0}, S_{topic'}^{t'}) \cdot S_{topic'}^{t'}[\tau])$$



$$\mathcal{F}(S_{topic}^{t_0})[\tau] = \underbrace{median}_{S_{topic'}^t \in N^K(S_{topic}^\tau)} (\alpha(S_{topic'}^{t_0}, S_{topic'}^{t'}) \cdot S_{topic'}^{t'}[\tau])$$



Evaluation

Dataset

- Public dataset of Wikipedia view statistics
- Historical data from 2008 until today
- Large-scale: 5 million articles attracting
 870 million views each day
 - 2.8 TB compressed



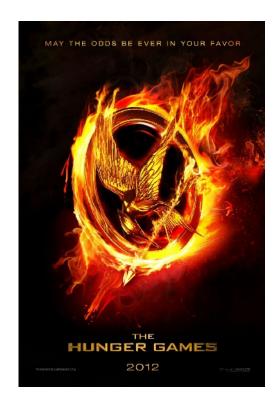
- → Semantic similarity between 5 million articles
- → 9 billion sequences to choose from

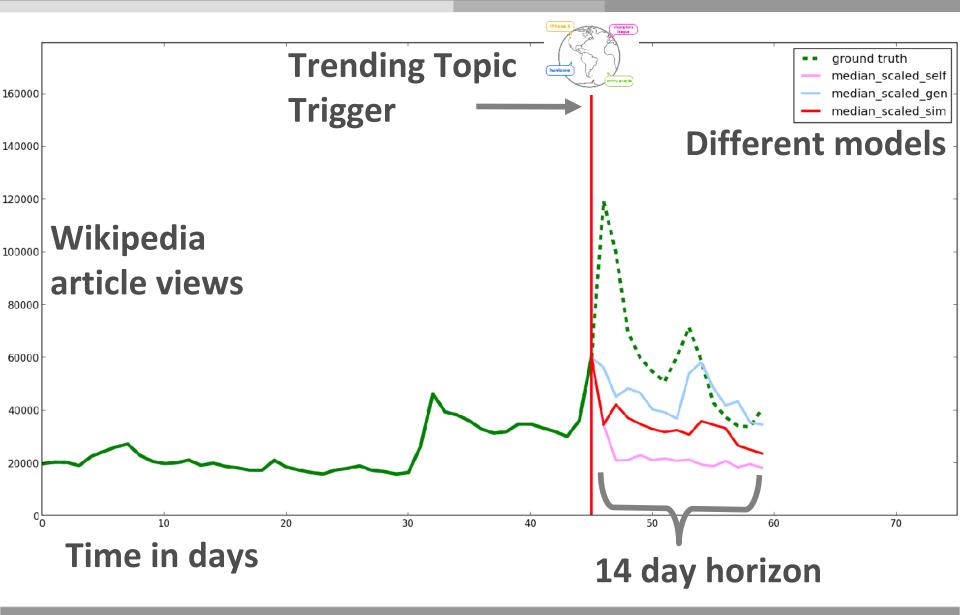
Use 200 top trending topics for evaluation

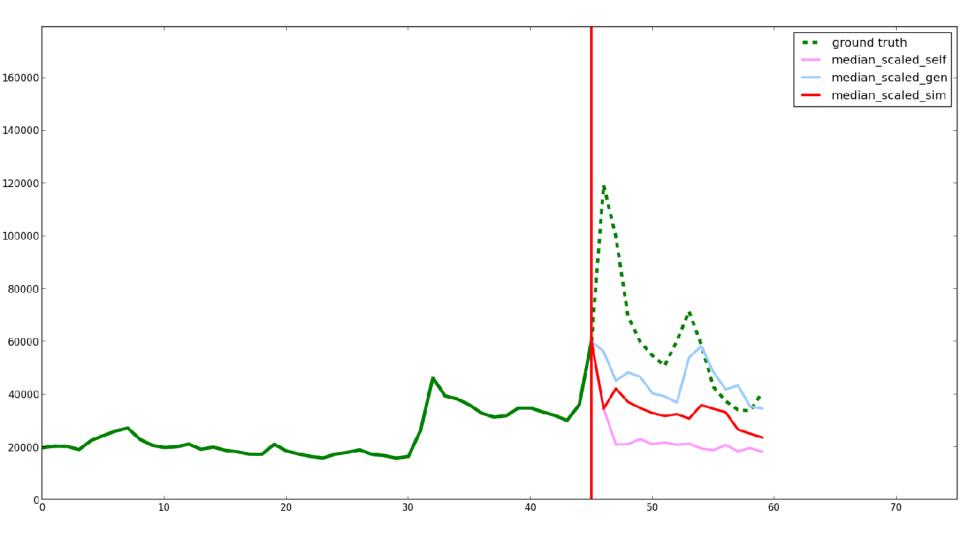
Thanks Jörn!

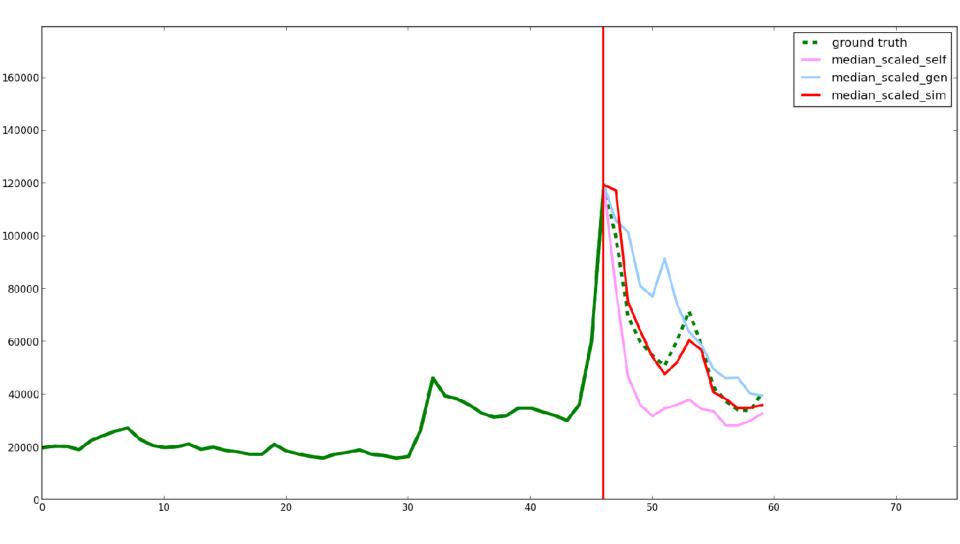
Discovering Semantically Similar Topics

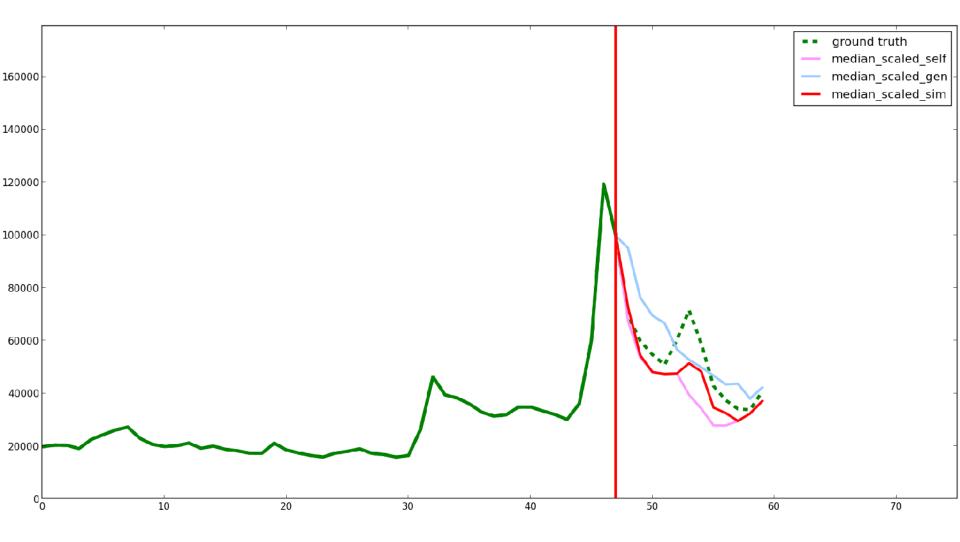
Trending Topic	Nearest Neighbor Topics
2012 Summer Olympics	2008 Summer Olympics, UEFA Euro 2012, 2010 Winter Olympics :: 2016 Summer Olympics, 2014 FIFA World Cup, 2006 Winter Olympics
Whitney Houston	Ciara, Shakira, Celine Dion, Brittany Murphy, Ozzy Osbourne :: Alicia Keys, Paul McCartney, Janet Jackson
Steve Jobs	Mark Zuckerberg, Rupert Murdoch, Steve Jobs :: Steve Wozniak, Bill Gates, Oprah Winfrey
Super Bowl XLVI	Super Bowl, Super Bowl XLV, Super Bowl XLIV :: Super Bowl XLIII, 2012 Pro Bowl, UFC 119
Justin Bieber	Selena Gomez, Kanye West, Justin Bieber :: Katy Perry, Avril Lavigne, Justin Timberlake
84th Academy Awards	83rd Academy Awards, 82nd Academy Awards :: List of Academy Awards ceremonies, 81st Academy Awards

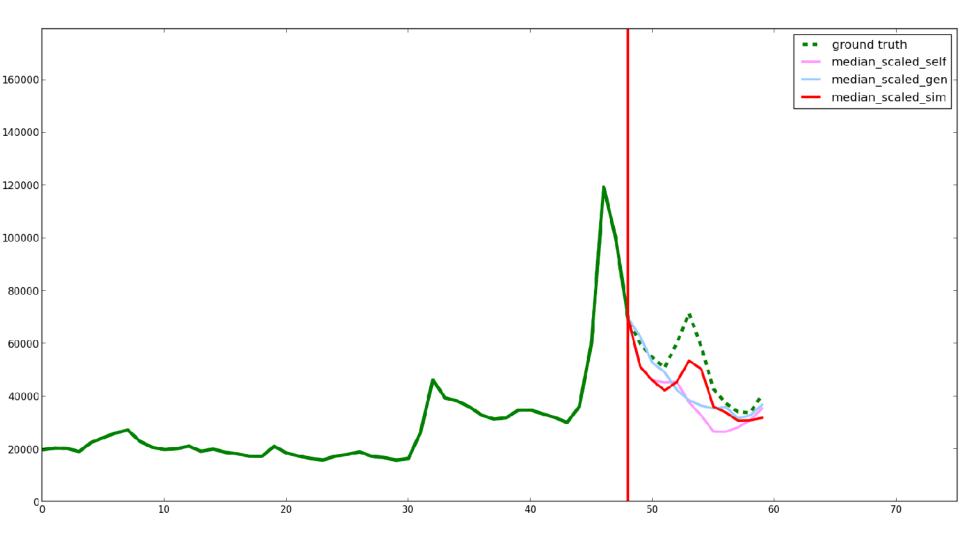




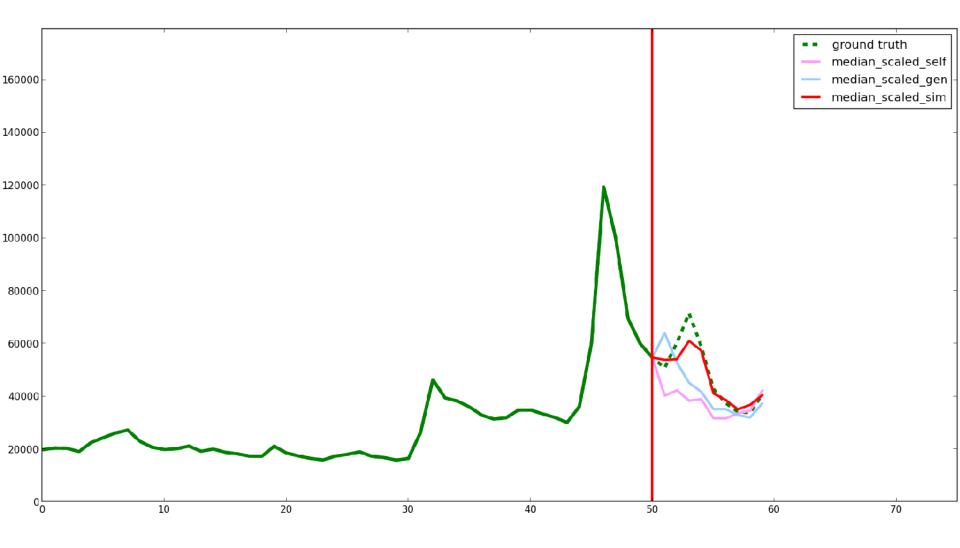


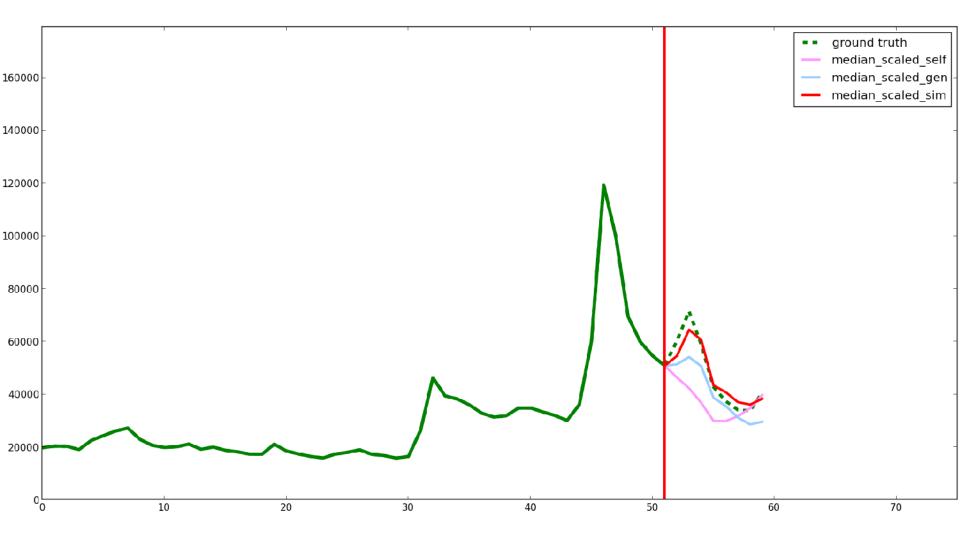


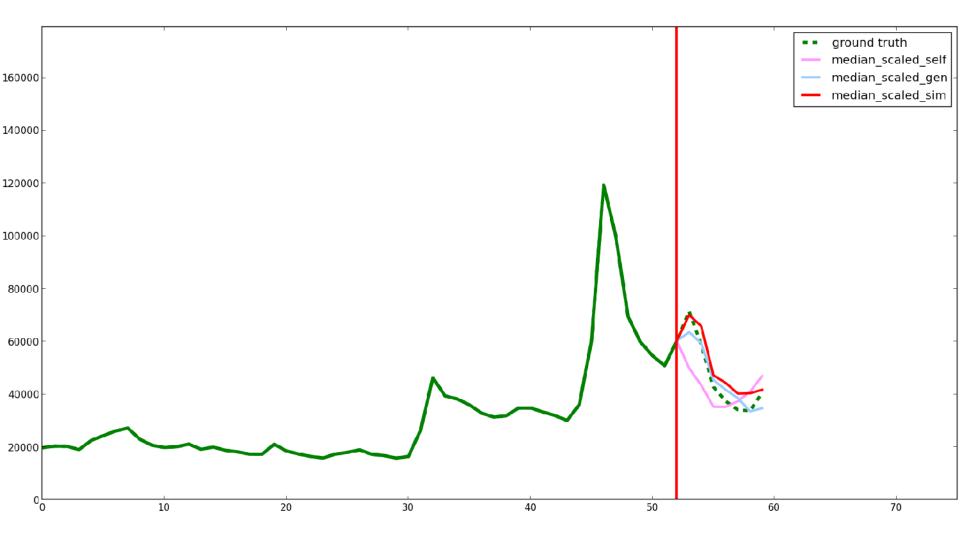


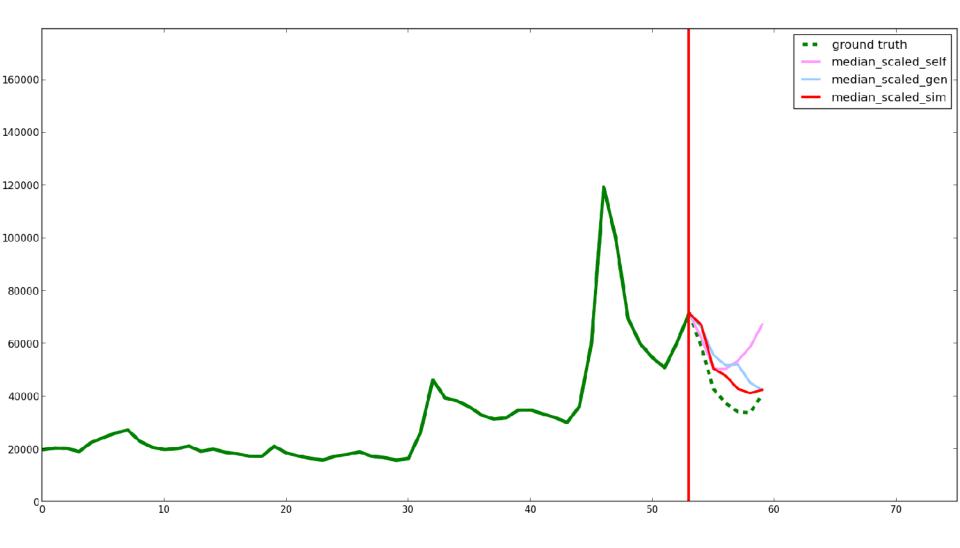


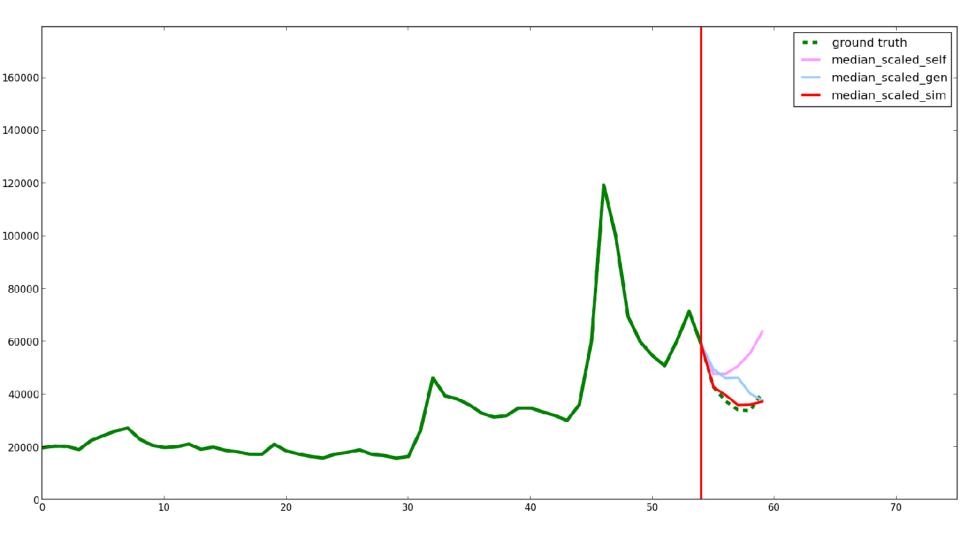


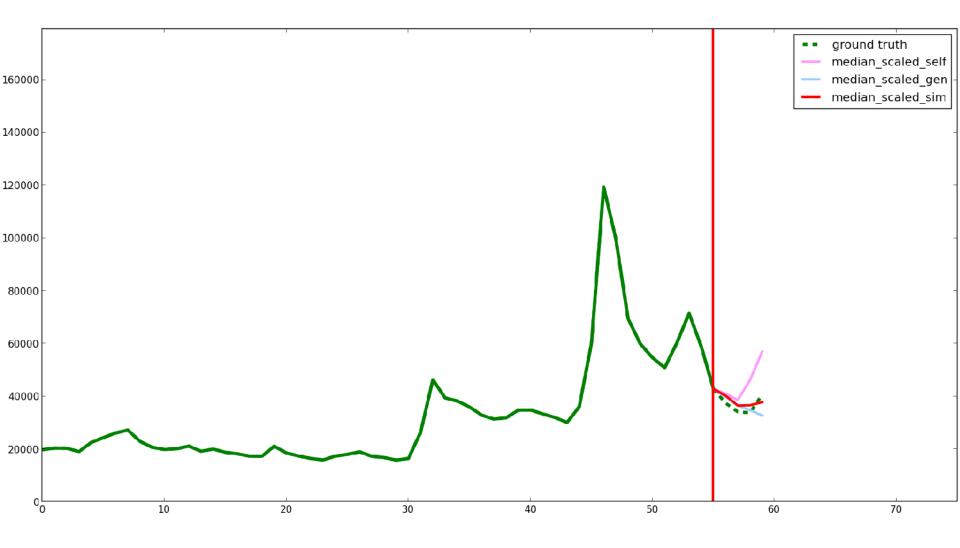


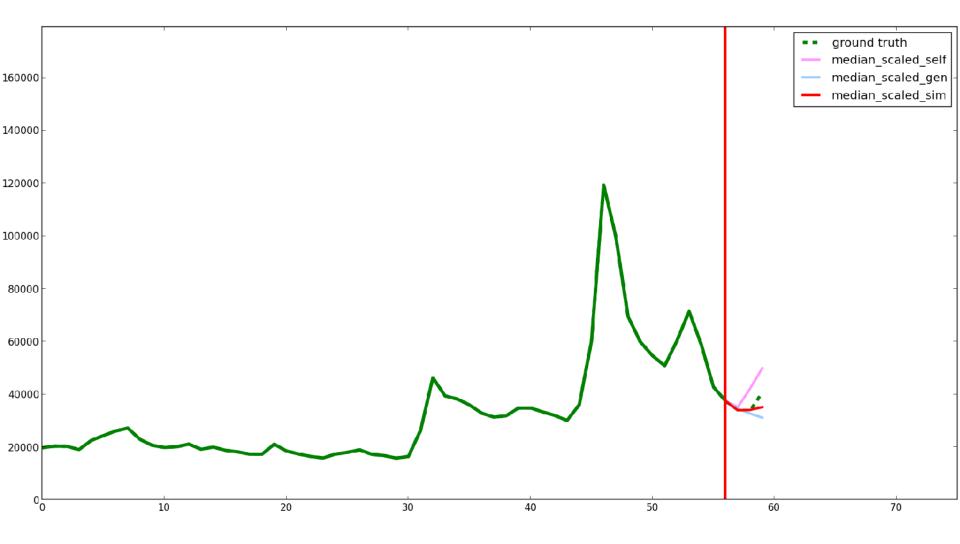


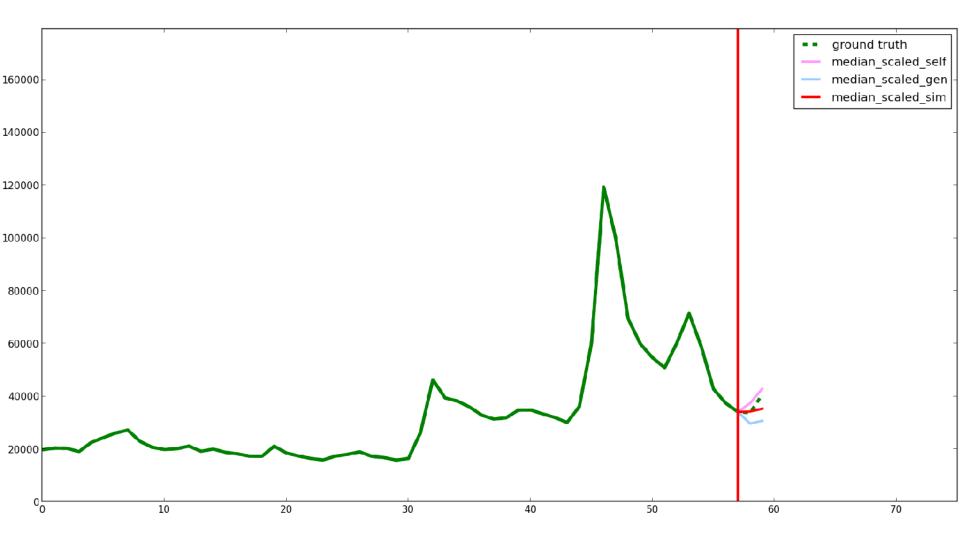


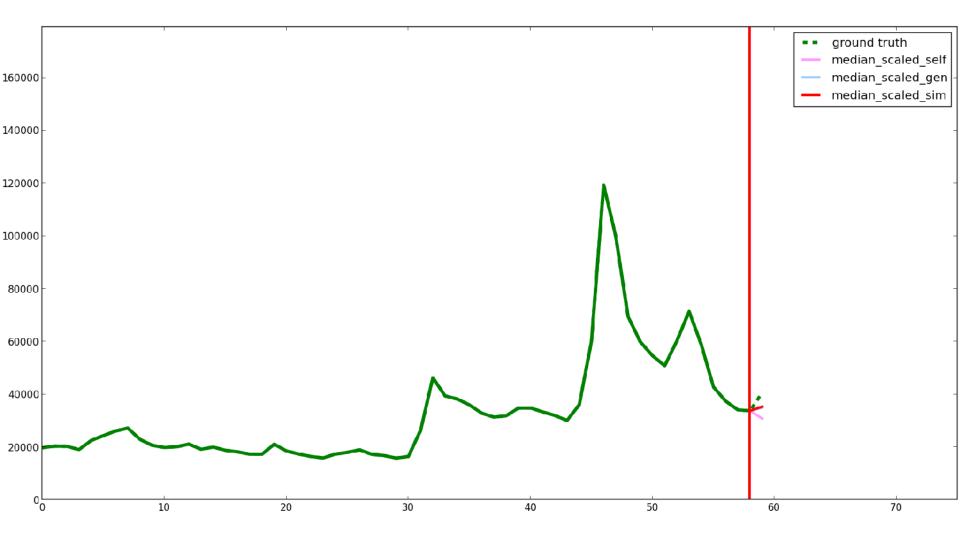












Quantitative Results

Root Mean Square Error

	Mathad	RMSEs in 1000					
	Method	$\tau = 0$	$\tau = 3$	$\tau = 5$	$\tau = 7$	$\tau=9$	
	naive						
Baselines	linear trend						
Duscillies	average trend						
	median trend	_					
	AR(1)						
ARIMA	AR(2)						
AKIMA	ARMA(1,1)						
	AutoARIMA	_					
	average	_					
Self	average_scaled						
Seij	median						
	median_scaled	_					
Gen	average						
	average_scaled						
	median						
	median_scaled	_					
Sim	average						
	average_scaled						
	median						
	median_scaled						

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (A_t - F_t)^2}$$

Root Mean Square Error

	Method	RMSEs in 1000				
		$\tau = 0$	$\tau = 3$	$\tau = 5$	$\tau = 7$	$\tau = 9$
Baselines	naive					
	linear trend					
	average trend					
	median trend	=				
	AR(1)					
ARIMA	AR(2)					
AKINA	ARMA(1,1)					
	AutoARIMA	_				
Self	average	_				
	average_scaled					
Seij	median					
	median_scaled	_				
Gen	average					
	average_scaled					
	median					
	median_scaled					
	average					
Sim	average_scaled					
	median					
	median_scaled					

$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (A_t - F_t)^2}$$

Root Mean Square Error

	Method	RMSEs in 1000					
	Wethod	$\tau = 0$	$\tau = 3$	$\tau = 5$	$\tau = 7$	$\tau = 9$	
	naive	63.2	33.1	20.2	17.4	11.4	
Baselines	linear trend	86.9	48.5	28.3	23.1	14.5	
Buschines	average trend	49.3	25.9	22.0	19.9	18.3	
	median trend	48.1	24.9	20.6	18.1	16.1	
	AR(1)	50.1	27.8	20.1	15.9	12.7	
ARIMA	AR(2)	75.1	31.7	22.6	16.0	13.4	
AKIMA	ARMA(1,1)	53.0	28.7	20.5	15.8	13.2	
	AutoARIMA	58.9	30.7	26.9	19.5	16.7	
	average	46.0	23.7	19.7	18.0	16.6	
Self	average_scaled	44.6	21.9	17.6	15.5	13.8	
Seij	median	46.1	23.8	19.7	17.7	16.0	
	median_scaled	44.9	22.3	18.1	15.5	14.4	
Gen	average	45.7	22.9	19.2	16.1	14.1	
	average_scaled	45.7	22.5	16.0	14.1	11.4	
	median	41.4	21.2	17.6	15.4	12.9	
	median_scaled	40.1	19.5	15.2	12.8	10.2	
	average	41.4	18.8	16.0	14.0	12.3	
Sim	average_scaled	39.6	17.1	13.7	11.6	10.0	
	median	42.1	19.9	16.5	14.0	12.5	
	median_scaled	41.0	17.9	14.2	11.5	9.8	

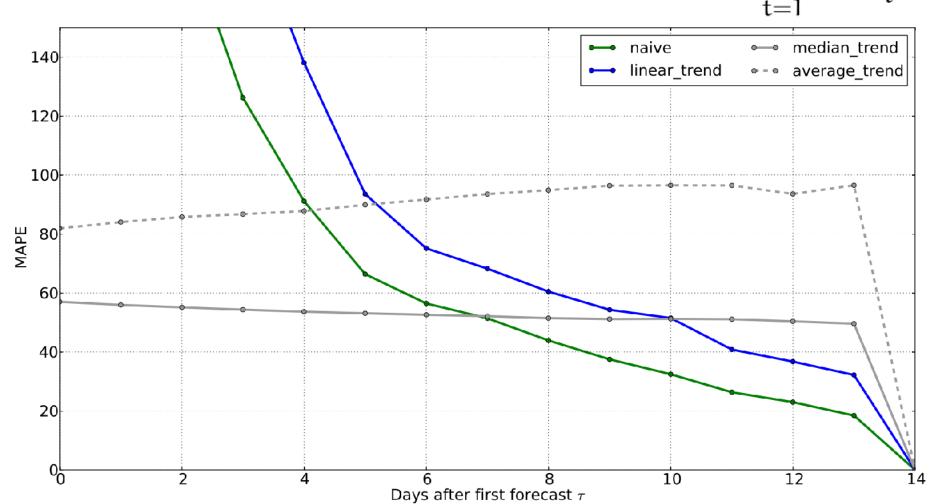
$$RMSE = \sqrt{\frac{1}{n} \sum_{t=1}^{n} (A_t - F_t)^2}$$

Mean Average Percentage Error

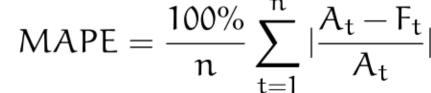
MAPE =
$$\frac{100\%}{n} \sum_{t=1}^{n} |\frac{A_t - F_t}{A_t}|$$

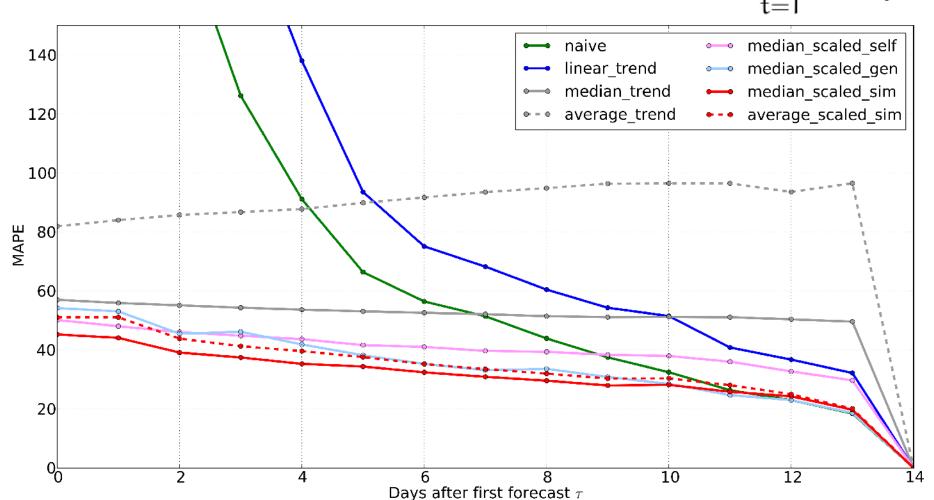
Mean Average Percentage Error

MAPE =
$$\frac{100\%}{n} \sum_{t=1}^{n} |\frac{A_t - F_t}{A_t}|$$



Mean Average Percentage Error





Conclusion

Main Contributions

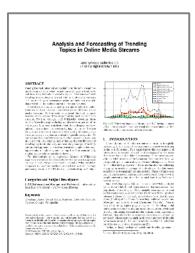
- 1. Multi-channel analysis of trending topics
- 2. Fully automatic forecasting technique exploiting semantic relationships between topics
- 3. Empirical evaluation on a large-scale Wikipedia dataset

Insights

- 1. Trends on Twitter and Wikipedia are significantly more ephemeral than on Google.
- 2. All observed media channels tend to specialize in specific topic categories.
- 3. Semantically similar topics exhibit similar behavior.
- 4. Exploiting this observation can significantly improve forecasting performance (by 20-90% compared to baselines).

Acknowledgments





Tim Althoff, Damian Borth, Jörn Hees, and Andreas Dengel. Analysis and Forecasting of Trending Topics in Online Media Streams. Submitted to ACM Multimedia, 2013.

Questions?

Thank you for your attention!

Backup Slides

Motivation

 Big Data: "High volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery and process optimization"

- Large-scale user behavior
 - > "Mirror of Society"

[Mark A. Beyer and Douglas Laney. The importance of 'big data': A definition. June 2012.]

Large-scale Record of Human Behavior

1.2 million video minutes per second (est. 2016)

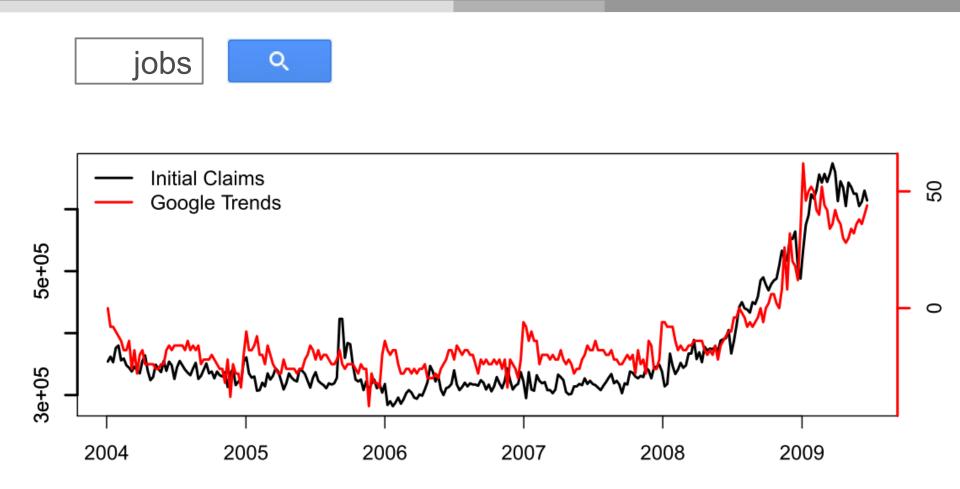
 Primary method for communication by college students in the U.S.

 25 million articles and 1.8 billion page edits in 285 languages created by 100k contributors

340 million tweets each day by 500 million users

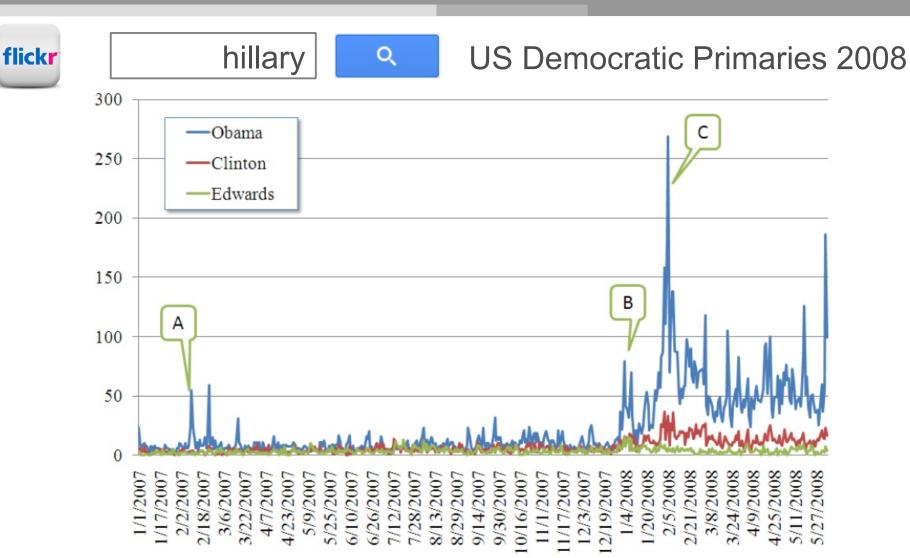
 One billion search requests and about twenty petabytes of user-generated data each day (2009)

Unemployment Claims



[Choi and Varian. Predicting initial claims for unemployment benefits. Google, Inc. 2009.]

Political Elections



[Jin et al. The wisdom of social multimedia: using Flickr for prediction and forecast. ACM Multimedia 2010.]

What is the world talking about?

Social Media can offer insights in

- what the world is talking about
- how people feel about events, brands and products resulting in an collective awareness for **trending topics**

A trending topic

- is a subject matter of discussion agreed on by a group of people
- experiences a sudden spike in user interest or engagement

[Damian Borth, Adrian Ulges, Thomas Breuel. Dynamic Vocabularies for Web-based Concept Detection by Trend Discovery. ACM Multimedia, 2012]

Trending Topics Discovery

Wednesday, 12. Oct 2011

Clustering

Cluster: apple

▶ apple ▶ ios 5 ▶ lions 5-0

Cluster: phillies

▶ peyton hillis ▶ phillies

Cluster: the avengers

▶ the avengers trailer ▶ the avengers

Cluster: iphone 4s

▶ iphone 4s ▶ iphone 4

Cluster: Julija Tymoschenko

▶ Yulia Tymoshenko Dulija Tymoschenko

Cluster: republican debate

▶ new hampshire debate ▶ gop debate
 ▶ republican debate ▶ presidential debate

▶ republican presidential candidates

Cluster: occupy wall street

▶ occupy wall street ▶ occupy

Cluster: steve jobs

▶ steve jobs ▶ steve jobs dead ▶ steve jobs died

▶ jobs ▶ jobs steve

Cluster: happy national coming out day

▶ happy national coming out day ▶ national coming out day ▶ National Coming Out Day

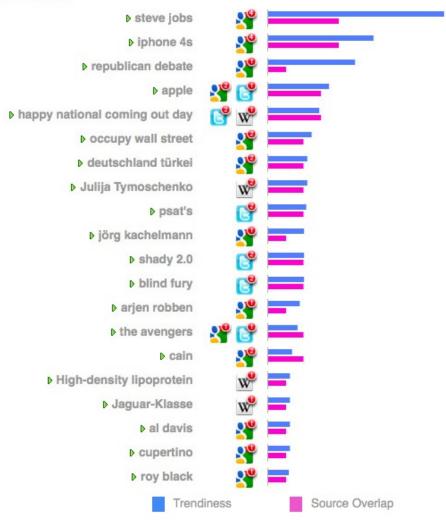
Cluster: Phoenix Jones

▶ phoenix jones ▶ Phoenix Jones

Trending Topics Discovery

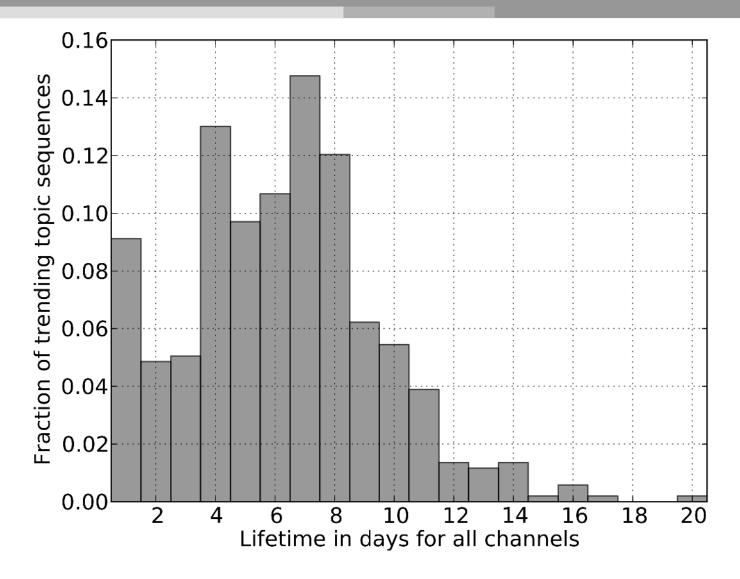
Wednesday, 12. Oct 2011

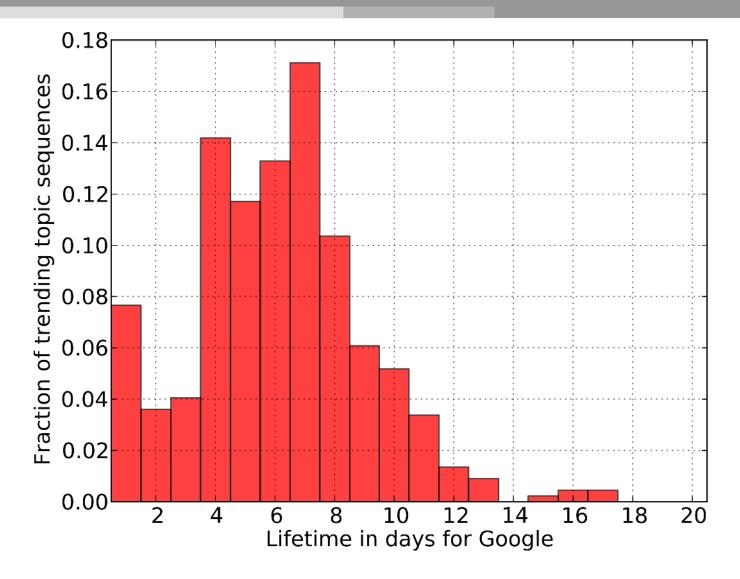
Top 20 Trends

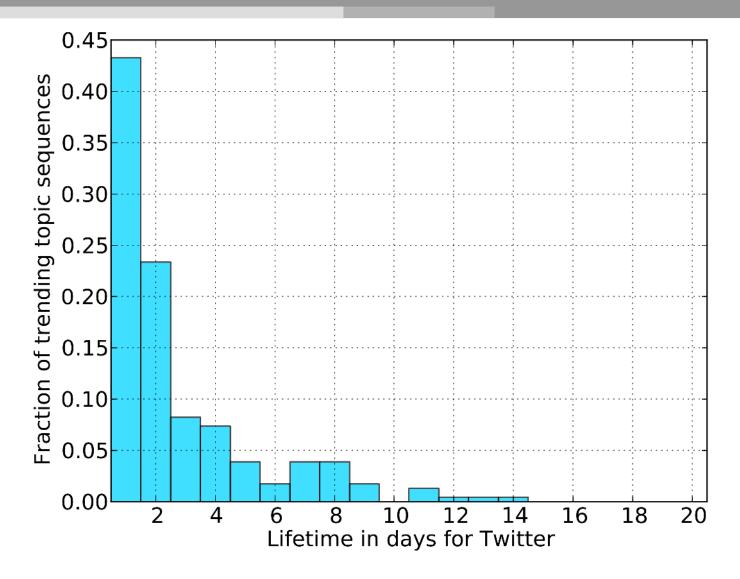


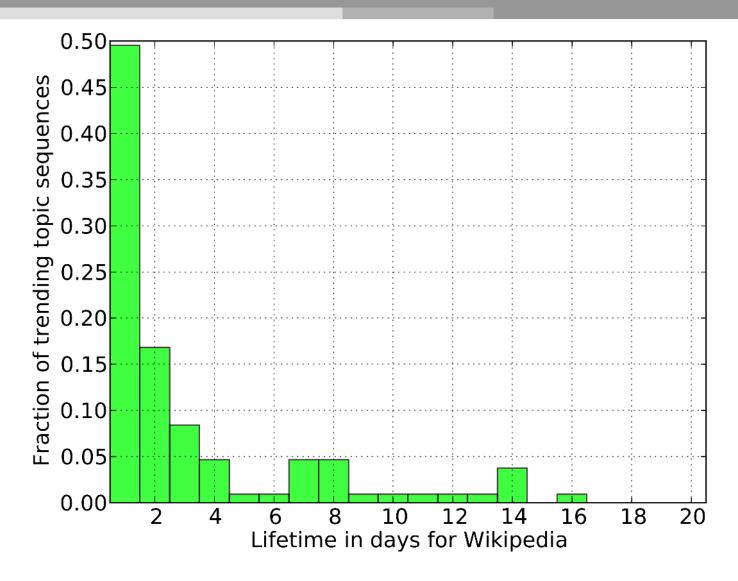
Clustering

Cluster: apple ▶ apple ▶ ios 5 ▶ lions 5-0 Cluster: phillies ▶ peyton hillis ▶ phillies Cluster: the avengers ▶ the avengers trailer ▶ the avengers Cluster: iphone 4s ▶ iphone 4s ▶ iphone 4 Cluster: Julija Tymoschenko ▶ Yulia Tymoshenko ▶ Julija Tymoschenko Cluster: republican debate new hampshire debate D gop debate ▶ republican debate ▶ presidential debate republican presidential candidates Cluster: occupy wall street ▶ occupy wall street ▶ occupy Cluster: steve jobs ▶ steve jobs ▶ steve jobs dead ▶ steve jobs died ▶ jobs ▶ jobs steve Cluster: happy national coming out day ▶ happy national coming out day ▶ national coming out day ▶ National Coming Out Day Cluster: Phoenix Jones ▶ phoenix jones ▶ Phoenix Jones









Basic Forecasting Techniques

$$X_t = X_{t-1}$$

Linear Trend

$$X_{t} = X_{t_0} + \frac{(X_{t_0} - X_{t_0 - d})}{d} \cdot (t - t_0)$$

Average/Median

$$X_t = average(X_t^1, \dots, X_t^n)$$

ARMA
$$X_t = c + \varepsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

Nearest Neighbor

$$X_t = \operatorname{operator}\left(X_{t_1}^1, \dots, X_{t_k}^k\right)$$

